The Effects of Pressure on Boiling Point Temperatures

A system under pressure can handle higher temperatures, and offers a higher static boiling point. Most liquids have a specific "boiling point", which is the temperature at which the liquid begins to change to a gas. If pressure is applied to the liquid, it must become hotter before it can boil. Pure water in a cooling system will boil (at sea level) at $212^{\circ} \mathrm{F}$. At higher altitudes, atmospheric pressure is less than at sea level. Example: Water at 5,280 feet will boil at a mere $203^{\circ} \mathrm{F}$. A cooling system that is under 15 pounds of pressure however, will now allow the water to reach nearly $250^{\circ} \mathrm{F}$ before it can boil. Even at this temperature the water is able to circulate through the engine, cooling parts that are at a much higher temperature without the water boiling. As long as the coolant remains in liquid form it can do it's job and transfer heat to the radiator or heat exchanger so it can be dissipated. Coolant that is boiling cannot transfer as much heat and overheating is likely to occur if the coolant turns to a gaseous state. Steam adjacent to a hot surface, such as a combustion wall, can actually act as an insulator - thus preventing any heat transfer to the coolant.

For every pound of pressure exerted on the coolant in the system, the static boiling point of the coolant is raised by approximately $3^{\circ} \mathrm{F}$

Effect of System Pressure on Boiling Point

Coolant	0 psi	4 psi	8 psi	12 psi	16 psi	20 psi	24 psi
Water	212 F	225 F	233 F	242 F	252 F	260 F	265 F
33%	220 F	230 F	240 F	253 F	260 F	268 F	273 F
44%	224 F	234 F	245 F	257 F	265 F	272 F	279 F
60%	231 F	241 F	253 F	264 F	273 F	280 F	285 F
50%	226 F	236 F	248 F	259 F	267 F	275 F	280 F

Boiling Point of Coolant with Varying Percentages of Ethylene Glycol @t Atmospheric Pressure \& @ 15 P.S.I.				
	Atmospheric		15 PSI (103 kPa)	
\% E.G.	B.P. C	B.P. F	B.P. C	B.P. F
0	100C	212F	120C	248F
33	104C	219 F	125 C	257 F
44	107C	224 F	128C	262 F
50	108C	227 F	129C	265 F
60	111C	232 F	132C	270 F

Effect of System Pressure on Boiling Point

Coolant	$\mathbf{0} \mathbf{~ p s i}$	$\mathbf{3 p s i}$	$\mathbf{5} \mathbf{~ p s i}$	$\mathbf{1 0} \mathbf{~ p s i}$	$\mathbf{1 2} \mathbf{~ p s i}$	$\mathbf{1 5} \mathbf{~ p s i}$	$\mathbf{2 0} \mathbf{~ p s i}$
Water	$212^{\circ} \mathrm{F}$	$221^{\circ} \mathrm{F}$	$227^{\circ} \mathrm{F}$	$242^{\circ} \mathrm{F}$	$248^{\circ} \mathrm{F}$	$257^{\circ} \mathrm{F}$	$272^{\circ} \mathrm{F}$
PG Conc.	$323^{\circ} \mathrm{F}$	$332^{\circ} \mathrm{F}$	$338^{\circ} \mathrm{F}$	$353^{\circ} \mathrm{F}$	$359^{\circ} \mathrm{F}$	$368^{\circ} \mathrm{F}$	$383^{\circ} \mathrm{F}$
$\mathbf{3 0 \%}$	$216^{\circ} \mathrm{F}$	$225^{\circ} \mathrm{F}$	$231^{\circ} \mathrm{F}$	$246^{\circ} \mathrm{F}$	$252^{\circ} \mathrm{F}$	$261^{\circ} \mathrm{F}$	$276^{\circ} \mathrm{F}$
$\mathbf{4 0 \%}$	$219^{\circ} \mathrm{F}$	$228^{\circ} \mathrm{F}$	$234^{\circ} \mathrm{F}$	$249^{\circ} \mathrm{F}$	$255^{\circ} \mathrm{F}$	$264^{\circ} \mathrm{F}$	$279^{\circ} \mathrm{F}$
$\mathbf{5 0 \%}$	$222^{\circ} \mathrm{F}$	$231^{\circ} \mathrm{F}$	$237^{\circ} \mathrm{F}$	$252^{\circ} \mathrm{F}$	$258^{\circ} \mathrm{F}$	$267^{\circ} \mathrm{F}$	$282^{\circ} \mathrm{F}$

